## What is Low Impact Development (LID)?

Ever wish you could simultaneously lower your site infrastructure costs, protect the environment, and increase your project's marketability? With LID techniques, you can. LID is an ecologically friendly approach to site development and storm water management that aims to mitigate development impacts to land, water, and air. The approach emphasizes the integration of site design and planning techniques that conserve the natural systems and hydrologic functions of a site.


## LID Benefits

In addition to the practice just making good sense, LID techniques can offer many benefits to a variety of stakeholders.

## Developers

- Reduce land clearing and grading costs
- Potentially reduce infrastructure costs (streets, curbs, gutters, sidewalks)
- Reduce storm water management costs
- Potentially reduce impact fees and increase lot yield
- Increase lot and community marketability

Municipalities

- Protect regional flora and fauna
- Balance growth needs with environmental protection
- Reduces municipal infrastructure and utility maintenance costs (streets, curbs, gutters, sidewalks, storm sewer)
- Increase collaborative public/private partnerships

Environment

- Preserve integrity of ecological and biological systems
- Protect site and regional water quality by reducing sediment, nutrient, and toxic loads to water bodies
- Reduce impacts to local terrestrial and aquatic plants and animals
- Preserve trees and natural vegetation


## Case Study

Kensington Estates is a conventional development on 24 acres consisting of 103 singlefamily homes in Pierce County, WA. A study was conducted to redesign the site using a new state storm water model and to illustrate the full range of LID practices and technotogies avaitable to developers.

Overall, the redesigned LID site could have:

- Resulted in construction cost savings of over 20\%;
- Preserved $62 \%$ of the site in open space;
- Maintained the project density of 103 lots;

Reduced the size of storm pond structures and eliminated catchments and piped storm conveyances; and

- Achieved "zero" effective impervious surfaces.


Cost Comparison: LID vs. Conventional Development

## For More Information

- Low Impact Development Center http: //www.lowimpactdevelopment.org
- Prince George's County, Maryland http://www.goprincegeorgescounty.com
- NAHB Research Center Toolbase Services http://www.toolbase.org
- U.S. EPA
http://www.epa.gov/owow/nps/urban.html


## Builder's Guide to Low Impact Development

Would you be interested in saving upwards of $\$ 70,000^{*}$ per mile in street infrastructure costs by eliminating one lane of on-street parking on residential streets?

Did you know that communities designed to maximize open space and preserve mature vegetation are highly marketable and command higher lot prices?

Are you aware that most homeowners perceive
Low Impact Development practices, such as bioretention, as favorable since such practices are viewed as additional builder landscaping?
Did you know that by reducing impervious surfaces, disconnecting runoff pathways, and using on-site infiltration techniques, you can reduce or eliminate the need for costly storm water ponds?

## LID Site Planning and Design Concepts

Successul uDprojects simutaneously reduce land development and infrat mucture costs while protectinga property's natural rescurcesand functions. During the deuslopment pmoess, the desigrer, developer, and reviewing axency should work together to identify solutions that integrate the following concepts:
Presene open space and Minimize Land Distubance;
Protect and incorporate Natural systems (wetlands, streamr wildife corridors, mature Torests) as Design Elements,
cotilim Mes-Tratitional stretand tot teyputs
Decentrive and wicromarage s tom wheter at its source using LiD storm wheter
Nanagement Pra: tices.
UD and Storm Water Management
UDaims to mimic natura hydrologyand processes by using small-scale, decentral ized practices that infi trate, eveporate, and transpire rainwater spec ifixally, LID airst to:

- Mrimize impenious aurfas:
- Disonrea hydrologia elemerts (roofs, dowrapouts, parkira aress);
- Mirtainit rarease flow pathe a rd times; a rd
- Utilize deoertrmized trestment pratios.
$\frac{\text { Boretertion Areas }}{5 \text { torm wa ter d rest }}$
Storm we ter d reated to these sha llow to posraplia depression in the landospe is filtered, stored, and irfitmed into the ground usi is specin lized vegetationund ergineered soit.


## Gmared 5wale

Whiter movirg through these systems is slowed, filtered, a rd peroolated irto the grourd. These systems an nat as low oost ititerrative to arte, gutters, ard pipes.


Lib Loc Lseiscuro Concros:

Preserve Open Space and Minimize Land Disturbance


Cormuniky Cosn space Wemakr Hames Kauksitha, wri

Decentralize and Micromanage Storm Wat er at its Source using LID Storm Water Management Practices


Grased Swatcs
Samease Dswespmatic pamease Dersispment


Utilize Neo-Traditional Street
and Lot Layouts and Designs

